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Framing And Testing Hypotheses 
 

Hypotheses are potential explanations that can account for our observations of 
the external world. They usually describe cause-and-effect relationships between a 
proposed mechanism or process (the cause) and our observations (the effect). 
Observations are data – what we see or measure in the real world. Our goal in 
undertaking a scientific study is to understand the cause(s) of observable phenomena. 
Collecting observations is a means to that end: we accumulate different kinds of 
observations and use them to distinguish among different possible causes. Some 
scientists and statisticians distinguish between observations made during manipulative 
experiments and those made during observational or CORRELATIVE studies. However, in 
most cases, the statistical treatment of such data is identical. The distinction lies in the 
confidence we can place in INFERENCES1 drawn from those studies. Well-designed 
manipulative experiments allow us to be confident in our inferences; we have less 
confidence in data from poorly-designed experiments or from studies in which we were 
unable to directly manipulate variables.  

 
If observations are the “what” of science, hypotheses are the “how”. Whereas 

observations are taken from the real world, hypotheses need not be. Although our 
observations may suggest hypotheses, hypotheses also can come from the existing 
body of scientific literature, from the predictions of theoretical models, and from our own 
intuition and reasoning. However, not all descriptions of cause-and-effect constitute 
valid scientific hypotheses. A scientific hypothesis is always testable: in other words, 
there should be some set of additional observations or experimental results that we 
could collect that would cause us to modify, reject, or discard our working hypothesis.2 
Metaphysical hypotheses, including the activities of omnipotent gods, do not qualify as 
scientific hypotheses, because these explanations are taken on faith, and there are no 
observations that would cause a believer to reject these hypotheses.3 
                                            
1 In logic, an inference is a conclusion that is derived from premises. Scientists make inferences (draw 
conclusions) about causes based on their data. These conclusions may be suggested or implied by the 
data. But remember that it is the scientist who infers, and the data that imply. 
 
2 Whereas a scientific hypothesis refers to a particular mechanism or cause-and-effect relationship, a 
scientific THEORY is much broader and more synthetic. In its early stages, not all elements of a scientific 
theory may be fully articulated, so that explicit hypotheses initially may not be possible. For example, 
Darwin’s theory of natural selection required a mechanism of inheritance that conserved traits from one 
generation to the next, but still preserved variation among individuals. Darwin did not have an explanation 
for inheritance, and he discusses this weakness of his theory in The Origin of Species (1859). Darwin did 
not know that precisely such a mechanism had already been discovered by Gregor Mendel’s 
experimental studies of inheritance in pea plants. Ironically, Darwin’s grandfather, Erasmus Darwin, had 
studied the problem of inheritance a generation earlier. However, Erasmus Darwin used snapdragons as 
his experimental organism, whereas Mendel used pea plants. Inheritance of flower color is simpler in pea 
plants than in snapdragons, so that Mendel was able to recognize the particulate nature of genes, 
whereas Erasmus Darwin could not. 
 
3 Although many philosophies have attempted to bridge the gap between science and religion, the 
contradiction between reason and faith is a critical fault line separating the two. The early Christian 
philosopher Tertullian (~155-222 AD) seized upon this contradiction and asserted “Credo quai absurdum 
est” (I believe because it is absurd).“ In Tertullian’s view, that the son of God died is to be believed 
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In addition to being testable, a good scientific hypothesis should generate novel 

predictions. These predictions can then be tested, verified, or rejected by collecting 
additional observations. However, the same set of observations may be predicted by 
more than one hypothesis. Although hypotheses are chosen to account for our initial 
observations, a good scientific hypothesis also should provide a unique set of 
predictions that do not emerge from other explanations. By focusing on these unique 
predictions, we can collect more quickly the critical data that will discriminate among the 
alternatives. 

Scientific Methods 
The “scientific method” is the technique used to decide among hypotheses on the 

basis of observations and predictions. Most textbooks present only a single scientific 
method, but practicing scientists actually use several approaches in their work. 
 
Deduction and Induction 

DEDUCTION and INDUCTION are two important methods of scientific reasoning, and 
both involve drawing inferences from data or models. Deduction proceeds from the 
general case to the specific case. The following set of statements is an example of 
classic deduction: 
 
1) All of the ants in the Harvard forest are in the genus Myrmica. 
2) This particular ant was sampled in the Harvard Forest. 
3) This particular ant is in the genus Myrmica.  
 
Statements 1 and 2 are usually referred to as the major and minor premises, and 
statement 3 is the conclusion. The set of three statements is called a SYLLOGISM, an 
important logical structure introduced by Aristotle. Notice that the sequence proceeds 
from the general case (all of the ants in the Harvard Forest) to the specific case (the 
particular ant that was sampled). 
 

In contrast, induction4 proceeds from the specific case to the general case:  
                                                                                                                                             
because it is contradictory; and that he rose from the grave has certitude because it is impossible (Reese 
1980). 
 

4 The champion of the inductive method was Sir Francis Bacon (1561-1626), a major legal, 
philosophical, and political figure in Elizabethan England. He was a prominent member of parliament, and 
was knighted in 1603. In Shakespeare studies, some of the “anti-Stratfordians” believe he was the true 
author of Shakespeare’s plays, but the evidence isn’t very compelling. His most important scientific writing 
is the New Organon (1620), in which he urged the use of induction and empiricism as a way of knowing 
the world. This was an important philosophical break with the past, in which explorations of “natural 
philosophy” involved excessive reliance on deduction and on published authority (particularly the works of 
Aristotle). Bacon’s inductive method paved the way for the great scientific breakthroughs by Galileo and 
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1) All 25 of these ants are in the genus Myrmica. 
2) All 25 of these ants were collected at the Harvard Forest. 
3) All of the ants in the Harvard Forest are in the genus Myrmica. 
 

Statistics, by its very nature, is an inductive process because we are always 
trying to draw general conclusions based on a specific, limited sample. Both induction 
and deduction are used in all models of scientific reasoning, but they receive different 
emphases. Even using the “inductive method” we probably will use deduction to derive 
specific predictions from the general hypothesis in each turn of the cycle. Incidentally, 
some philosophers prefer to define deduction as “certain inference” and induction as 
“probable inference”. That certainly fits our collection of ants at the Harvard Forest. In 
the first case (deduction), the conclusion must be logically true if the first two premises 
are true. But in the second case (inference), the conclusion is likely to be true, but may 
be false; our confidence will increase with the size of our sample, as is always the case 
in statistical inference. 

 
Any scientific inquiry begins with an observation that we are trying to explain. The 

inductive method takes this observation and develops a single hypothesis to explain it. 
Bacon himself emphasized the importance of using the data to suggest the hypothesis, 
rather than relying on conventional wisdom, accepted authority, or abstract 
philosophical theory. Once the hypothesis is formulated, it generates — through 
deduction — further predictions. These predictions are then “tested” by collecting 
additional observations. If the new observations match the predictions, the hypothesis 
would be supported. If not, the hypothesis must be modified to take into account both 
the original observation and the new observations. This cycle of hypothesis-prediction-
observation is repeatedly traversed. After each cycle, the modified hypothesis should 
come closer to the “true” cause5 (Figure 4.1). 
 

Two advantages of the inductive method are (1) it emphasizes the close link 
between data and theory; and (2) it explicitly builds and modifies hypotheses based on 
previous knowledge. The inductive method is confirmatory in that we seek data that 

                                                                                                                                             
Newton in the Age of Reason. Near the end of his life, Bacon’s political fortunes took a turn for the worse, 
and in 1621 he was convicted of accepting bribes and was removed from office. Bacon’s devotion to 
empiricism eventually did him in. Attempting to “test the hypothesis” that freezing slows the putrefaction of 
flesh, Bacon ventured out in the cold during the winter of 1626 to stuff a chicken with snow. He became 
badly chilled and died a few days later at the age of 65. 
 
5 A common use of induction by ecologists and environmental scientists comes in using statistical 
software to fit non-linear (curvy) functions to data (see Chapter 9). The software requires that you specify 
not only the equation to be fit, but also a set of initial values for the unknown parameters. These initial 
values need to be “close to” the actual values because the algorithms are local estimators (i.e., they solve 
for local minima or maxima in the function). Thus, if the initial estimates are “far away” from the actual 
values of the function, it is possible that the curve-fitting routines will either fail to converge on a solution, 
or will converge on a non-sensical one. Plotting the fitted curve along with the data is a good safeguard to 
confirm that the curve derived from the estimated parameters actually fits the original data. 
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support the hypothesis and then we modify the hypothesis to conform with the 
accumulating data6.  

 
There are also several disadvantages of the inductive method. Perhaps the most 

serious is that the inductive method considers only a single starting hypothesis; other 
hypotheses are only considered later, in response to additional data and observations. If 
we “get off on the wrong foot” and begin exploring an incorrect hypothesis, it may take a 
long time to arrive at the correct answer through induction. In some cases we may 
never get there at all. Second, the inductive method may encourage scientists to 
champion pet hypotheses, and perhaps hang on to them long after they should have 
been discarded or radically modified (Loehle 1987). Finally, using the inductive method 
– at least in Bacon’s view – a scientist derives theory exclusively from empirical 
observations. However, many important theoretical insights have come from theoretical 
modeling, abstract reasoning, and plain old intuition. Important hypotheses in all 
sciences have often emerged well in advance of the critical data that are needed to test 
them.7 
 
Modern-Day Induction: Bayesian Inference 

The NULL HYPOTHESIS is the starting point of a scientific investigation. A null 
hypothesis tries to account for patterns in the data in the simplest way possible, which 
often means initially attributing variation in the data to randomness (or measurement 
error). If that simple null hypothesis can be rejected, we can move on to entertain more 

                                            

6 The community ecologist Robert H. MacArthur (1930-1972) once wrote that the group 
of researchers interested in making ecology a science “arranges ecological data as examples testing the 
proposed theories and spends most of its time patching up the theories to account for as many of the 
data as possible.” (MacArthur 1962). This quote characterizes much of the early theoretical work in 
community ecology. Later, theoretical ecology developed as a discipline in its own right, and some 
interesting lines of research blossomed without any reference to data or the real world. Ecologists 
disagree about whether such a large body of purely theoretical work has been good or bad for our 
science (Pielou 1981, Caswell 1988). 
 
7 For example, the Austrian physicist Wolfgang Pauli (1900-1958) hypothesized in 1931 the existence of 
the neutrino— an electrically neutral particle with negligible mass— to account for apparent 
inconsistencies in the conservation of energy during radioactive decay. Empirical confirmation of the 
existence of neutrino did not come until 1956. 
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complex hypotheses.8 Often, the null hypothesis invokes random variation or sampling 
effects alone to account for the patterns. Because the inductive method begins with an 
observation that suggests an hypothesis, how do we generate an appropriate null 
hypothesis? Bayesian inference represents a modern, updated version of the inductive 
method. The principals of Bayesian inference can be illustrated with a simple example. 
 

The photosynthetic response of leaves to increases in light intensity is a well-
studied problem. Imagine an experiment in which we grow 15 mangrove seedlings, 
each under a different light intensity (expressed as photosynthetic photon flux density 
[PPFD] in µmol photons per m2 of leaf tissue exposed to light per second) and measure 
the photosynthetic response of each plant (expressed as µmoles of CO2 fixed per m2 of 
leaf tissue exposed to light per second). We then plot the data with light intensity on the 
x- axis (the predictor variable) and photosynthetic rate on the y-axis (the response 
variable). Each point represents a different leaf for which we have recorded these two 
numbers.  
 

In the absence of any information about the relationship between light and 
photosynthetic rates, the simplest hypothesis is that there is no relationship between 
these two variables (Figure 4.2). If we fit a line to this null hypothesis, the slope of the 
line would equal 0. If we collected data and found some other relationship between light 
availability and photosynthetic rate, we would then use those data to modify our 
hypothesis, along the lines laid out for the inductive method. 
 

But is it really necessary to frame an hypothesis as if you had no information at 
all? Using just a bit of knowledge about plant physiology, we can formulate a more 
realistic initial hypothesis. To begin with, we expect there to be some maximum 
photosynthetic rate that the plant can achieve. Beyond this point, increases in light 
intensity will not yield additional photosynthesis, because some other factor, such as 
water or nutrients, becomes limiting. Even if these factors were supplied, and the plant 
were grown under optimal conditions, photosynthetic rates will still level out because 
there are inherent limitations in the rates of biochemical processes and electron 
                                            

8 The preference for “simple” hypotheses over complex ones has a long history in 
science. Sir William of Ockham’s (1290-1349) Principle of Parsimony states that “[Entities] are not to be 
multiplied beyond necessity.” Ockham believed that unnecessarily complex hypotheses were vain and 
insulting to God. The Principle of Parsimony is sometimes known as Ockham’s Razor, the razor shearing 
away unnecessary complexity. Ockham lived an interesting life. He was educated at Oxford and was a 
member of the Franciscan order. He was charged with heresy for some of the writing in his Master’s 
thesis. The charge was eventually dropped, but when Pope John XXII challenged the Franciscan doctrine 
of apostolic poverty, Ockham was excommunicated and fled to Bavaria. Ockham died in 1349, probably a 
victim of the black plague epidemic. 
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transfers that occur during photosynthesis. (In fact, if we keep increasing light intensity, 
excessive light energy can damage plant tissues and reduced photosynthesis. But in 
our example, we limit the upper range of light intensities to those that the plant can 
tolerate.) 
 

Thus, our “informed” null hypothesis is that the relationship between 
photosynthetic rate and light intensity should be non-linear, with an asymptote at high 
light intensities (Figure 4.2). Real data could then be used to test the degree of 
"support" for this more realistic null hypothesis (Figure 4.3). To determine which null 
hypothesis to use, we also must ask what, precisely, is the point of the study? To simply 
describe the relationship between light intensity and photosynthetic rate; to determine if 
our species is unusual compared to others in the same genus or ecological guild; or to 
test theoretical models that predict the parameters for the asymptote?  
 

The example illustrated in Figures 4.2 and 4.3 is how a modern-day inductivist, or 
Bayesian statistician, generates an hypothesis. The Bayesian approach is to use prior 
knowledge or information to generate and test hypotheses. In this example, the prior 
knowledge was derived from knowledge of plant physiology and the expected shape of 
the light saturation curve, However, prior knowledge might also be based on the 
extensive base of published literature on light saturation curves (Bjorkman 1981, 
Lambers et al. 1998). If we had data on actual parameter estimates from other studies, 
we might even be able to quantify our prior estimates of the threshold and asymptote 
values for light saturation. These estimates could then be used to further specify the 
initial hypothesis for fitting the threshold and asymptote values to our experimental data. 

 
Use of prior knowledge in this way is different from Bacon’s view of induction, 

which was based entirely on an individual’s own experience. In a Baconian universe, if 
you had never studied plants before, you would have no direct evidence on the 
relationship between light and photosynthetic rate, and you would begin with a null 
hypothesis such as the flat line shown in Figure 4.2. This is actually the starting point for 
the hypothetico-deductive method (presented in the next section).  

 
This strict Baconian interpretation of induction is the basis of the fundamental 

critique of the Bayesian approach: that the “prior knowledge” used to develop the initial 
model is arbitrary and subjective, and may be biased by preconceived notions of the 
investigator. Thus, the hypothetico-deductive method is viewed by some as more 
“objective” and more “scientific”. Bayesians counter this argument by asserting that the 
statistical null hypotheses and curve-fitting techniques used by hypothetico-deductivists 
are just as subjective, but because their methods are familiar and uncritically accepted, 
they only seem to be more objective. For a further discussion of these philosophical 
issues, see Ellison (1996) and Dennis (1996). 
 
The Hypothetico-Deductive Method  

The HYPOTHETICO-DEDUCTIVE METHOD (Figure 4.4) developed from the works of 
Newton and other 17th century scientists and was championed by the philosopher of 
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science Karl Popper.9 Like the inductive method, the hypothetico-deductive method 
begins with an initial observation that we are trying to explain. However, rather than 
positing a single hypothesis and working forward, the hypothetico-deductive method 
asks us to propose multiple, working hypotheses. All of these hypotheses account for 
the initial observation, but they each make additional unique predictions that can be 
tested by further experiments or observations. The goal of these tests is not to confirm, 
but to falsify, the hypotheses. Falsification eliminates some of the explanations, and the 
list is winnowed down to a smaller number of contenders. The cycle of predictions and 
new observations is repeated. However, the hypothetico-deductive method never 
confirms an hypothesis; the accepted scientific explanation is the hypothesis that 
successfully withstands repeated attempts to falsify it.  
 

The two advantages of the hypothetico-deductive method are: (1) it forces a 
consideration of multiple working hypotheses right from the start; and (2) it highlights the 
key predictive differences between them. In contrast to the inductive method, 
hypotheses do not have to be built up from the data, but can be developed 
independently or in parallel with data collection. The emphasis on falsification tends to 
produce simple testable hypotheses, so that parsimonious explanations are considered 
first, and more complicated mechanisms only later.10  

 
The disadvantages of the hypothetico-deductive method are that multiple working 

hypotheses may not always be available, particularly in the early stages of investigation. 
Even if multiple hypotheses are available, the method does not really work unless the 
“correct” hypothesis is among the alternatives. In contrast, the inductive method may 
begin with an incorrect hypothesis, but can reach the correct explanation through 
repeated modification of the original hypothesis, as informed by data collection. Another 

                                            

9 The Austrian philosopher of science Karl Popper (1902-1994) was the most 
articulate champion of the hypothetico-deductive method and falsifiability as the cornerstone of science. 
In The Logic of Scientific Discovery (1935) Popper argued that falsifiability is a more reliable criterion of 
truth than verifiability. In The Open Society and Its Enemies (1945), Popper defended democracy and 
criticized the totalitarian implications of induction and the political theories of Plato and Karl Marx. 
 
10 The LOGIC TREE is a well-known variant of the hypothetico-deductive method that you may be familiar 
with from chemistry courses. The logic tree is a dichotomous decision tree in which different branches are 
followed depending on the results of experiments at each fork in the tree. The final “branch tips” of the 
tree represent the different hypotheses that are being tested. The logic tree also can be found in the 
familiar dichotomous taxonomic key for identifying to species unknown plants or animals: “if the animal 
has 3 pairs of walking legs, go to couplet x; if it has 4 or more pairs, go to couplet y”. The logic tree is not 
always practical for complex ecological hypotheses (there may be too many branch points, and they may 
not all be dichotomous), but it is an excellent exercise to try and place your ideas and experiments in 
such a comprehensive framework. Platt (1964) champions this method and points to its spectacular 
success in molecular biology; the discovery of the helical structure of DNA is a classic example of the 
hypothetico-deductive method (Watson and Crick 1953). 
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useful distinction is that the inductive method gains strength by comparing many data 
sets to a single hypothesis, whereas the hypothetico-deductive method is best for 
comparing a single data set to multiple hypotheses. Finally, both the inductive method 
and hypothetico-deductive method place emphasis on a single “correct” hypothesis, 
making it difficult to evaluate cases in which multiple factors are at work. This is less of 
a problem with the inductive approach, because multiple explanations can be 
incorporated into more complex hypotheses.  
 

Neither method is the “correct” one, and some philosophers of science deny that 
either scenario really describes how science operates,11 but the hypothetico-deductive 
and inductive methods do characterize much science in the real world (as opposed to 
the abstract world of the philosophy of science). The reason for spending time on these 
models is to understand their relationship to statistical tests of an hypothesis. 
 

Testing Statistical Hypotheses  
 
Statistical Hypotheses vs. Scientific Hypotheses 

Using statistics to test hypotheses is only a small facet of the scientific method 
but consumes a disproportionate amount of our time and journal space. We use 
statistics to describe patterns in our data, and then we use statistical tests to decide 
whether the predictions of an hypothesis are supported or not. Establishing hypotheses, 
articulating their predictions, designing and executing valid experiments, and collecting, 
organizing, and summarizing the data all occur before we use statistical tests. We 
emphasize that accepting or rejecting a statistical hypothesis is quite distinct from 
accepting or rejecting a scientific hypothesis. The statistical NULL HYPOTHESIS is usually 
one of “no pattern” (such as no difference between groups or no relationship between 
two continuous variables; but see alternative null hypotheses in Figure 4.2), whereas 

                                            

11 No discussion of Popper and the hypothetico-deductive method would be complete 
without mention of Popper’s philosophical nemesis, Thomas Kuhn (1922-1996). In The Structure of 
Scientific Revolutions (1964), Kuhn called into question the entire framework of hypothesis testing, and 
argued that it did not represent the way that science was done. Kuhn believed that science was done 
within the context of major PARADIGMS or research frameworks, and that the domain of these paradigms 
was implicitly adopted by each generation of scientists. The “puzzle-solving” activities of scientists 
constituted “ordinary science”, and involved reconciling empirical anomalies with the existing paradigm. 
However, no paradigm could encompass all observations, and as anomalies accumulate, the paradigm 
becomes unwieldy. Eventually it collapses, and there is a scientific revolution in which an entirely new 
paradigm replaces the existing framework. Taking somewhat of an intermediate stance between Popper 
and Kuhn, the philosopher Imre Lakatos (1922-1974) thought that “scientific research programs” (SRPs) 
consisted of a “hard core” of central principles that generated a belt of surrounding hypotheses that make 
more specific predictions. The predictions of the hypotheses can be tested by the scientific method, but 
the core is not directly accessible (Lakatos 1978). Exchanges between Kuhn, Popper, Lakatos, and other 
philosophers of science can be read in Lakatos and Musgrave (1970). See also Horn (1986) for further 
discussion of these ideas. 
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the ALTERNATIVE HYPOTHESIS is that pattern exists (such as distinctly differences between 
groups in the measured values or a clear relationship between continuous variables). 
You must ask how such patterns relate to the SCIENTIFIC HYPOTHESIS you are testing. 
 

For example, suppose you are evaluating the scientific hypothesis that waves 
scouring a rocky coast create empty space that can be colonized by invertebrates that 
normally would be outcompeted by dominant members of the community. This 
disturbance hypothesis predicts that species diversity of marine invertebrates will 
change as a function of level of disturbance (Sousa 1979). You collect data on the 
number of species on disturbed and undisturbed rock surfaces. Using an appropriate 
statistical test, you find no difference in species richness in these two groups. In this 
case, you have failed to reject the statistical null hypothesis, and the data fail to support 
one of the predictions of the disturbance hypothesis. Note, however, that absence of 
evidence is not evidence of absence; failure to reject a null hypothesis is not equivalent 
to “accepting” a null hypothesis (although it is often treated that way).  

 
Here is a second example in which the statistical pattern is the same, but the 

scientific conclusion is different. The IDEAL FREE DISTRIBUTION is an hypothesis that 
predicts that organisms move between habitats and adjust their density so that they 
have the same mean fitness in different habitats (Fretwell and Lucas 1970). One 
testable prediction of this hypothesis is that the fitness of organisms in different habitats 
is similar, even though population density may differ. Suppose you measure population 
growth rate of birds (an important component of avian fitness) in forest and field habitats 
as a test of this prediction (Gill et al. 2001). As in the first example, you fail to reject the 
null hypothesis, and conclude that there is no evidence that growth rates differ among 
habitats. But in this case, failing to reject the null hypothesis actually supports a 
prediction of the ideal free distribution hypothesis.  

 
Naturally, there are many other observations and tests we would want to make to 

evaluate the intermediate disturbance hypothesis or the ideal free distribution. The point 
here is that the scientific and statistical hypotheses are distinct entities. In any study, 
you must determine whether supporting or refuting the statistical null hypothesis 
provides positive or negative evidence for the scientific hypothesis. Such a 
determination also influences profoundly how you set up your experimental study or 
observational sampling protocols. The distinction between the statistical null hypothesis 
and the scientific hypothesis is so important, we will return to it later in this chapter. 
 
Statistical Significance And P-Values 

It is nearly universal to report the results of a “statistical test” in order to assert 
the importance of patterns we observe in the data that we collect. A typical assertion is: 
“The control and treatment groups differed significantly from one another (P = 0.01).” 
What, precisely, does “P = 0.01” mean, and how does it relate to the concepts of 
probability that we introduced in Chapters 1 and 2?  
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An Hypothetical Example: Comparing Means 
A common assessment problem in environmental science is to determine 

whether or not human activities result in increased stress in animals. In vertebrates, 
“stress” can be measured as levels of the glucocorticoid hormones (GC) in the 
bloodstream or feces. For example, wolves that are not exposed to snowmobiles have 
872.0 ng/g GC, whereas wolves exposed to snowmobiles have 1468.0 ng/g GC (Creel 
et al. 2002). Now what? How do you decide whether this difference is large enough to 
be attributed to the presence of snowmobiles?12 
 

Here is where you could conduct an appropriate statistical test. Such tests can 
be very simple – such as the familiar t-test, or rather complex – such as tests for 
interactions terms in an analysis of variance. But all such statistical tests produce as 
their output a TEST STATISTIC, which is just the numerical result of the test, and a 
PROBABILITY VALUE (or P-value) that is associated with the test statistic.  
 

The Statistical Null Hypothesis 
Before we can define the probability of a statistical test, we must first define the 

statistical null hypothesis, or H0. We noted above that scientists favor parsimonious or 
simple explanations over more complex ones. What is the simplest explanation to 
account for the difference in the means of the two groups? In our example, the simplest 
explanation is that the differences represent random variation between the groups and 
do not reflect any systematic effect of snowmobiles. In other words, if we were to divide 
the wolves into two groups but not expose individuals in either group to snowmobiles, 
we might still find that the means differ from each other. Remember that the means for 
two sets of numbers will always be “different” from one another, even if those numbers 
were generated by an identical process.  

 
Glucocorticoid levels will differ from one individual to another for many reasons 

that cannot be studied or controlled in this experiment, and all of this variation – 
including variation due to measurement error – we label “random variation”. We want to 
know if there is any evidence that the observed difference in the mean GC levels of the 
two groups is larger than we would expect given the random variation among 
individuals. Thus, a typical statistical null hypothesis is that “differences between groups 
are no greater than we would expect due to random variation”. We call this a statistical 
null hypothesis because the hypothesis is that a specific mechanism or force– other 
than random variation– does not operate.  
                                            
12 Many people try to answer this question by just “looking at the means”. However, we cannot evaluate a 
difference between means unless we have some feeling for how much individuals within a treatment 
group differ. For example, if several of the individuals in the no snowmobile group have GC levels as low 
as 200 and others have GC levels as high as 1544 (remember the average was 872), then a difference of 
600 ng/g between the two exposure groups may not mean much. On the other hand, if most individuals in 
the no snowmobile group have GC levels between 850 and 950, then a 600 ng/g difference is substantial. 
As we discussed in Chapter 3, we need to know not only the difference in the means, but the variance 
about those means – the amount that a typical individual differs from its group mean. Without knowing 
something about the variance, we cannot say anything about whether differences between the means of 
two groups are meaningful. 
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The Alternative Hypothesis 
Once we state the statistical null hypothesis, we define one or more alternative 

hypotheses. In our example, the natural alternative hypothesis is that the observed 
difference in the average GC levels of the two groups is larger than can be accounted 
for by random variation among individuals. Notice that the alternative hypothesis is not 
that snowmobile exposure is responsible for an increase in GC! Instead, the alternative 
hypothesis is focused simply on the pattern that is present in the data. The investigator 
can infer mechanism from the pattern, but that inference is a separate step. The 
statistical test merely reveals whether the pattern is likely or unlikely, given that the null 
hypothesis is true. Our ability to assign causal mechanisms to those statistical patterns 
depends on the quality of our experimental design and our measurements. 
 

For example, suppose the group of wolves exposed to snowmobiles had also 
been chased by hunting dogs within the last day, whereas the unexposed group 
included wolves from a remote area uninhabited by humans. The statistical analysis 
would probably reveal significant differences in GC levels between the two groups 
regardless of exposure to snowmobiles. However, it would be dangerous to conclude 
that the difference between the means of the two groups was caused by snowmobiles, 
even though we can reject the null hypothesis that the pattern is accounted for by 
random variation among individuals. In this case, the treatment effect is CONFOUNDED 
with other differences between the control and treatment groups (exposure to hunting 
dogs) that are potentially related to stress levels. As we will discuss in Chapters 6 and 
7, an important goal of good experimental protocol is to avoid such confounded designs. 
 

If our experiment was correctly designed, it could be safe to infer that the 
difference between the means was “due to” the presence of snowmobiles. But even 
here, we cannot pin down the precise physiological mechanism if all we did was 
measure the GC levels of exposed and unexposed individuals. We would need much 
more detailed information on hormone physiology, blood chemistry, and the like if we 
want to get at the underlying mechanisms.13 Statistics help us to establish convincing 
patterns, and from those patterns we can begin to draw inferences or conclusions about 
cause-and-effect relationships. 
 

In most tests, the alternative hypothesis is not explicitly stated, because there is 
usually more than one alternative hypothesis that could account for the patterns in the 
data. Rather, we consider the set of alternatives to be “not H0”. In a Venn diagram, all 
outcomes of data can then be classified into either H0 or not H0. 
 

                                            
13 Even if the physiological mechanisms were elucidated, there would still be questions about ultimate 
“mechanisms” at the molecular or genetic level. Any time we propose a “mechanism”, there will always be 
lower-level processes that are not completely described by our explanation and have to be treated as a 
“black box”. However, not all higher-level processes can be explained successfully by reductionism to 
lower-level mechanisms. 
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The P-Value 
In simple statistical analysis, we ask whether the null hypothesis of random 

variation among individuals can be rejected. The P-value is a guide to making that 
decision. A statistical P-value measures the probability that observed differences would 
be found if the null hypothesis were true. Using the notation of conditional probability 
introduced in Chapter 1, P-value = P(data | H0). 
 

Suppose the P-value is relatively small (close to 0.0). Then it is unlikely (the 
probability is small) that the observed differences could have been obtained if the null 
hypothesis were true. In our example of wolves and snowmobiles, a low P-value would 
mean that it is unlikely that a 600 ng/g difference in GC levels would have been 
observed between the exposed and unexposed groups if there was only random 
variation among individuals and no consistent effect of snowmobiles (i.e., if the null 
hypothesis is true). Therefore, with a small P-value, the results would be improbable 
given the null hypothesis, so we reject it. Because we had only one alternative 
hypothesis in our study, our conclusion is that snowmobiles (or something associated 
with them) could be responsible for the differences between the treatment groups14. 

                                            
14 Accepting an alternative hypothesis based on this mechanism of testing a null hypothesis is an 
example of the “fallacy of affirming the consequent” (Barker 1989). Formally, the P-value = P(data | H0). If 
the null hypothesis is true, it would result in (or in the terms of logic, imply) a particular set of observations 
(here, the data): H0 ⇒ null data, where the arrow is read as “implies”. If your observations are different 
from those expected under H0, then a low P-value suggests that H0 ⇒/  your data, where the crossed 
arrow is read as “does not imply”. Because you have set up only one alternative hypothesis, Ha, then you 
are further asserting that Ha = ¬H0 (where the symbol ¬ means “not”), and the only possibilities for data 
are those data possible under H0 (“null data”) and those not possible under H0 (“¬null data” = “your data”), 
as in the Venn diagram in Figure 4.5. Thus, you are asserting the following logical progression: 
 
Given: H0 ⇒ null data   (1) 
Observe: ¬null data   (2) 
Conclude ¬null data ⇒ ¬H0  (3) 
Thus: ¬H0 (= Ha) ⇒ ¬null data  (4) 
 
But really, all you can conclude is (3): ¬null data ⇒ ¬H0 (the so-called “contrapositive” of (1)). In (3) the 
alternative hypothesis (Ha) is the “consequent”, and you cannot assert its truth simply by observing its 
“predicate” (¬null data in (3)); many other possible causes could have yielded your results (¬null data). 
You can affirm the consequent (assert Ha is true) if and only if there is only one possible alternative to 
your null hypothesis. In the simplest case, where H0 asserts “no effect” and Ha asserts “some effect”, 
proceeding from (3) to (4) makes sense. But biologically, it is usually of more interest to know what is the 
actual effect (as opposed to simply showing there is “some effect”).  
 
Consider the ant example earlier in this chapter. Set H0 = all 25 ants in the Harvard Forest are Myrmica, 
and Ha = 10 ants in the forest are not Myrmica. If you collect a specimen of Formica in the forest, you can 
conclude that the data imply that the null hypothesis is false (observation of a Formica in the forest ⇒ 
¬H0). But you cannot draw any conclusion about the alternative hypothesis. You could support a less 
stringent alternative hypothesis Ha = not all ants in the forest are Myrmica, but affirming this alternative 
hypothesis does not tell you anything about the actual distribution of ants in the forest, or the number of 
different species and genera that are present. 
 
This is more than splitting logical hairs. Many scientists appear to believe that when they report a P-value 
that they are giving the probability of observing the null hypothesis given the data (P(H0 | data)) or the 
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On the other hand, suppose that the calculated P-value is relatively large (close 

to 1.0). Then it is likely that the observed differences could have occurred given that the 
null hypothesis is true. In this example, a high P-value would mean that it is likely that a 
600 ng/g difference in GC levels would have been observed between the exposed and 
unexposed groups even if there were no effects of snowmobiles, and only random 
variation among individuals. Therefore, with a large P-value, the results would be likely 
under the null hypothesis, so we do not have sufficient evidence to reject it. Our 
conclusion is that differences in GC levels between the two groups can be most 
parsimoniously attributed to random variation among individuals. 

 
Keep in mind that when we calculate a statistical P-value, we are viewing the 

data through the lens of the null hypothesis. If the patterns in our data are likely under 
the null hypothesis (large P-value), we have no reason to reject the null hypothesis in 
favor of more complex explanations. On the other hand, if the patterns are unlikely 
under the null hypothesis (small P-value), it is more parsimonious to reject the null 
hypothesis and conclude that something more than random variation among subjects 
contributes to the results. 

What Determines The P-Value? 
The calculated P-value depends on three things: the number of observations in 

the samples (n), the difference between the means of the samples (Yi – Yj), and the 
level of variation among individuals (s2). The more observations in a sample, the lower 
the P-value, because the more data we have, the more likely it is we are estimating the 
true population means and can detect a real difference between them, if it exists (see 
The Law of Large Numbers in Chapter 3). The P-value will also be lower the more 
different the two groups are in the variable we are measuring. Thus, a 10-ng/g 
difference in GC levels between control and treatment groups will generate a lower P-
value than a 2-ng/g difference, all other things being equal. Finally, the P-value will be 
lower if the variance among individuals within a treatment group is small. The less 
variation there is from one individual to the next, the easier it will be to detect 
differences among groups. In the extreme case, if the GC levels for all individuals within 
the group of wolves exposed to snowmobiles were identical, and the GC levels for all 
individuals within the unexposed group were identical, then any difference in the means 
of the two groups, no matter how small, would generate a low P-value. 

When Is A P-Value Small Enough? 
In our example, we obtained a P-value = 0.01 for the probability of obtaining the 

observed difference in GC levels between wolves exposed to and not exposed to 
                                                                                                                                             
probability that the alternative hypothesis is false, given the data (1 – P(H1 | data)). But, in fact, they are 
reporting something completely different– the probability of observing the data given the null hypothesis: 
P(data | H0). Unfortunately, as we saw in Chapter 1, P(data | H0) ≠ P(H0 | data) ≠ 1 – P(H1 | data); in the 
words of the immortal anonymous philosopher from Maine, you can’t get there from here. However, it is 
possible to compute directly P(H0 | data) using Bayes Theorem (Chapter 1) and the Bayesian methods 
outlined in Chapter 5. 
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snowmobiles. Thus, if the null hypothesis were true, and there was only random 
variation among individuals in the data, the chance of finding a 600 ng/g difference in 
GC between exposed and unexposed groups is only 1 in 100. Stated another way, if the 
null hypothesis were true, and we conducted this experiment 100 times, using different 
subjects each time, in only 1 of the experiments would we expect to see a difference as 
large or larger than what we actually observed. Therefore, it seems unlikely the null 
hypothesis is true, and we reject it. If our experiment was designed well enough to 
eliminate other possible causes besides snowmobiles of differences in GC levels, we 
can safely conclude that snowmobiles cause increases in GC levels (although we 
cannot specify what it is about snowmobiles that causes this response). On the other 
hand, if the calculated statistical probability were P = 0.88, then we would expect a 
result similar to what we found in 88 out of 100 experiments due to random variation 
among individuals; our observed result would not be at all unusual under the null 
hypothesis, and there would be no reason to reject it. 

 
But what is the precise cut-point that we should use for making this decision to 

reject or not reject the null hypothesis? This is a judgment call, as there is no “natural” 
P-value below which we should always reject the null hypothesis, and above which, we 
should never reject the null hypothesis. However, after many decades of custom, 
tradition, and vigilant enforcement by editors and journal reviewers, the operational P-
value for making these decisions is P = 0.05. In other words, if the statistical probability 
is ≤ 0.05, the convention is to reject the null hypothesis, and if the statistical probability 
is > 0.05, the null hypothesis is not rejected. When scientists report that a particular 
result is “significant” they mean that they rejected the null hypothesis with a P-value ≤ 
0.05.15  

 
A little reflection should convince you that a P-value of 0.05 is relatively low. If 

you used this rule in your everyday life, you would never take an umbrella with you 
unless the forecast for rain was at least 95%. You would get wet a lot more often than 
your friends and neighbors. On the other hand, if your friends and neighbors saw you 
carrying your umbrella, they could pretty confident of rain. 

 
In other words, setting a P-value = 0.05 as the standard for rejecting a null 

hypothesis is very conservative. We require the evidence to be very strong in order to 
reject the statistical null hypothesis. Some investigators are unhappy about using an 
arbitrary P value, and about setting it as low as 0.05. After all, most of us would take an 
umbrella with a 90% forecast of rain, so why shouldn’t we be a bit less rigid in our 
standard for rejecting the null hypothesis. Perhaps we should set the critical P value = 
0.10, or perhaps we should use different p values for different kinds of data and 
questions. 
 

                                            
15 When scientists discuss “significant” results in their work, they are really speaking about how confident 
they are that a statistical null hypothesis has been correctly rejected. But the public equates “significant” 
with “important”. This distinction has caused no end of confusion, and it is one of the reasons that 
scientists have such a hard time communicating their ideas clearly in the popular press. 
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A defense of the 0.05-level is the observation that scientific standards need to be 
high so that investigators can build confidently on the work of others. If the null 
hypothesis is rejected with more liberal standards, there is a greater risk of falsely 
rejecting a true null hypothesis (described in more detail below). Such mistakes slow 
down scientific progress if we are trying to build hypotheses and scientific theories 
based on the data and results of others. By using a low P-value, we can be confident 
that the patterns in the data are quite strong. However, even a low P-value is not a 
safeguard against a poorly designed experiment or study. In such cases, the null 
hypothesis may be rejected, but the patterns in the data reflect flaws in the sampling or 
manipulations, not underlying biological differences that we are seeking to understand. 

 
Perhaps the strongest argument in favor of requiring a low P-value is that we 

humans are psychologically predisposed to recognizing and seeing patterns in our data, 
even if they don’t necessarily exist. Our vertebrate sensory system is adapted for 
organizing data and observations into “useful” patterns, generating a built-in bias 
towards rejecting null hypotheses and seeing patterns where there is randomness (Sale 
1984)16. A low P-value is a safeguard against such activity. A low P-value also helps act 
as a gatekeeper on the rate of scientific publications, because non-significant results 
are much less likely to be reported or published.17 We emphasize, however, that there is 
no law that requires a P-value to be ≤ 0.05 in order for the results to be declared 
“significant”. In many cases, it may be more useful to report the exact P-value and let 
the readers decide for themselves how important are the results. However, the practical 
reality is that reviewers and editors will usually not allow you to discuss mechanisms 
that are not supported by a P < 0.05 result. 

Statistical Hypotheses Vs. Scientific Hypotheses Redux 
As we noted before, the biggest difficulty in using P-values results from the 

failure to distinguish statistical null hypotheses from scientific hypotheses. The 
SCIENTIFIC HYPOTHESIS poses a formal mechanism to account for patterns in the data. In 
this case, our scientific hypothesis is that snowmobiles cause stress, which is indicated 
by GC levels. This might come about by complex changes in physiology that lead to 
changes in GC production. In contrast, the STATISTICAL NULL HYPOTHESIS is a statement 
about patterns in the data and the likelihood that these patterns could arise by chance 
or “random” processes that are not related to the factors we are explicitly studying. 

                                            
16 A fascinating illustration of this is to ask a friend to draw a set of 25 randomly located points on a piece 
of paper. If you compare the distribution of those points to a set of truly random points generated by a 
computer, you will often find that the drawings are distinctly non-random. People have a tendency to 
space the points too evenly across the paper, whereas a truly random pattern generates apparent 
“clumps” and “holes”. Given this tendency to see patterns everywhere, we should use a low P-value to 
ensure we are not deceiving ourselves. 
 
17 The well-known tendency for journals to reject papers with non-significant results (Murtaugh 2002) and 
authors to therefore not bother trying to publish them is not a good thing. In the view of the philosopher 
Karl Popper, science progresses through the elimination of alternative hypotheses, and this can often be 
done when we fail to reject a null hypothesis. However, this approach requires authors to specify and test 
the unique predictions that are made by competing alternative hypotheses. Statistical tests based on H0 
vs. not H0 do not allow for this kind of specificity. 
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We use the methods of probability to make a decision whether to reject or not 

reject this statistical null hypothesis; think of this as a method for establishing pattern in 
the data. Next, we draw a conclusion about the validity of our scientific hypothesis 
based on the pattern in this data. The strength of this inference depends very much on 
the details of the experiment and sampling design. In a well-replicated experiment that 
includes appropriate controls and in which individuals have been assigned randomly to 
clear-cut treatments, we can be fairly confident about our inferences and ability to 
evaluate the scientific hypothesis we are considering. However, in a sampling study in 
which we have not manipulated any variables but have simply measured differences 
among groups, it is difficult to make solid inferences about the underlying scientific 
hypotheses, even when we have rejected the statistical null hypothesis.18 
 

We think the more general issue is not the particular cutoff P-value that is 
chosen, but whether we always should be using an hypothesis-testing framework. 
Certainly for many questions statistical hypothesis tests are a powerful way to establish 
what patterns do or do not exist in the data. But in many studies, the real issue may not 
be hypothesis testing, but parameter estimation. For example, in the stress study, it may 
be more important to determine the range of GC levels expected for wolves exposed to 
snowmobiles rather than merely to establish that snowmobiles significantly increases 
GC levels. We also may establish the level of confidence or certainty in our parameter 
estimates.  
 
Errors in Hypothesis Testing 

Although statistics involves many precise calculations, it is important not to lose 
sight of the fact that statistics is a discipline steeped in uncertainty. We are trying to use 
limited and incomplete data to make inferences about underlying mechanisms that we 
may understand only partially. In reality, the statistical null hypothesis is either true or 
false; if we had complete and perfect information, we would know whether or not it were 
true and we would not need statistics to tell us. Instead, we have only our data and 
methods of statistical inference to decide whether to reject or not reject the statistical 
null hypothesis. This leads to an interesting 2 x 2 table of possible outcomes whenever 
we test a statistical null hypothesis (Table 4.1) 
 

Ideally, we would like to end up in either the upper left or lower right hand cells. 
In other words, when there is only random variation in our data we would hope to not 
reject the statistical null hypothesis, and when there is something more, we would hope 
to reject it. However, we may find ourselves in one of the other two cells, which 
correspond to the two kinds of errors that can be made in a statistical decision. 

                                            
 
18 In contrast to the example of the snowmobiles and wolves, suppose we measured the GC levels of 10 
randomly chosen old wolves and 10 randomly chosen young ones. Could we be as confident about our 
inferences as in the snowmobile experiment? Why or why not? What are the differences, if any, between 
experiments in which we manipulate individuals in different groups (exposed wolves, versus unexposed 
wolves) and sampling surveys in which we measure variation among groups but do not directly 
manipulate or change conditions for those groups (old vs. young wolves)? 



Chapter 4  Gotelli & Ellison 
Framing and Testing Hypotheses  A Primer of Ecological Statistics 

 Page 17 Rough Draft 

Type I Error 
If we falsely reject a null hypothesis that is true (upper right cell in Table 4.1), we 

have made a false claim that some factor above and beyond random variation is 
causing patterns in our data. This is a Type I error, and by convention, the probability of 
committing a Type I error is denoted by α. When you calculate a statistical P-value, you 
are actually estimating α. So, a more precise definition of a P-value is that it is the 
chance we will make a Type I error by falsely rejecting a true null hypothesis19. This 
definition lends further support for asserting statistical significance only when P is very 
small. The smaller the P-value, the more confident we can be that we will not commit a 
Type I error if we reject H0. In the glucocorticoid example, the risk of making a Type I 
error by rejecting the null hypothesis is 1%. As we noted before, scientific publications 
use a standard of a maximum of a 5% risk of Type I error for rejecting a null hypothesis. 
In environmental impact assessment, a Type I error would be a “false positive” in which, 
for example, an effect of a pesticide on human health is reported but does not, in fact, 
exist. 

Type II Error And Statistical Power 
The lower left cell in Table 4.1 represents a Type II error. In this case, the 

investigator has incorrectly failed to reject a null hypothesis that is false. In other words, 
there are, in fact, systematic differences between the groups being compared, but the 
investigator has failed to reject the null hypothesis and concluded that only random 
variation among observations is present. By convention, the probability of committing a 
Type II error is denoted by β. In environmental assessment, a Type II error would be a 
“false negative” in which, for example, there is an effect of a pollutant on human health, 
but it is not detected.20 

A concept related to the probability of committing a Type II error is the POWER of 
a statistical test. Power is calculated as 1 – β, and equals the probability of correctly 
rejecting the null hypothesis when it is false. We want our statistical tests to have good 
power so that we have a good chance of detecting significant patterns in our data when 
they are present.  

                                            
19 We have followed standard statistical treatments that equate the calculated p value with the estimate of 
Type I error rate α. However, Fisher’s evidential p value may not be strictly equivalent to Neyman and 
Pearson’s α. Statisticians disagree whether the distinction is an important philosophican issue or simply a 
semantic difference. Hubbard and Bayarri (2003) argue that the incompatibility is important, and their 
paper is followed by discussion, comments and rebuttals from other statisticians. Stay tuned! 
 
20 The relationship between Type I and Type II errors informs discussions of the “precautionary principle” 
of environmental decision-making. Historically, regulatory agencies assumed that new chemical products, 
for example, were benign until proven harmful; very strong evidence was required to reject the null 
hypothesis of no effect. Thus, a potential polluter is interested in minimizing the probability of committing 
Type I error. In contrast, the general public is interested in minimizing the probability that the polluter 
committed a Type II error – they assume that the pollutant is harmful until proven benign, and are willing 
to accept a larger probability of committing a Type I error if they are more confident that the polluter has 
not falsely accepted the null hypothesis of no effect. For similar reasons, in assessing quality control of 
industrial production, Type I and Type II errors are often known as “producer” and “consumer” errors, 
respectively (Sokal and Rohlf 1995). 
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What Is The Relationship Between Type I And Type II Error? 
Ideally, we would like to minimize both Type I and Type II errors in our statistical 

decisions. However, strategies designed to reduce Type I error inevitably increase the 
risk of Type II error and vice-versa. For example, suppose you decide to reject the null 
hypothesis only if P < 0.01, a five-times more stringent standard than the conventional 
criterion of P < 0.05. Although your risk of committing a Type I error is now much lower, 
there is a much greater chance that when you fail to reject the null hypothesis, you may 
be doing so incorrectly (committing a Type II error). Although Type I and Type II errors 
are inversely related to one another, there is no simple mathematical relationship 
between them, because the probability of a Type II error depends, in part, on what the 
alternative hypothesis is, how large an effect we hope to detect (Figure 4.5), the sample 
size, and on the wisdom of our experimental design or sampling protocol. 

Why Are Statistical Decisions Based On Type I Error? 
In contrast to the probability of committing a Type I error, which we determine 

with standard statistical tests, the probability of committing a Type II error is not often 
calculated or reported, and in many scientific papers, the probability of committing a 
Type II error is not even discussed. Why not? To begin with, we often cannot calculate 
the probability of a Type II error unless the alternative hypotheses are completely 
specified. In other words, if we want to determine the risk of falsely accepting the null 
hypothesis, the alternatives have to be fleshed out more than just “not H0”. In contrast, 
calculating the probability of a Type I error does not require this specification, and 
instead requires us only to meet some assumptions of normality and independence (see 
Chapters 9-10).  

 
On a philosophical basis, some authors have argued that a Type I error is a more 

serious mistake in science than a Type II error (Shrader-Frechette and McCoy 1992). A 
Type I error is an error of falsity, in which we have incorrectly rejected a null hypothesis 
and made a claim about a more complex mechanism. Others may follow our work and 
try to build their own studies based on that false claim. In contrast, a Type II error is an 
error of ignorance. Although we have not rejected the null hypothesis, someone else 
with a better experiment or data may be able to do so in the future, and the science will 
progress from that point. However, in many applied problems, such as environmental 
monitoring or disease diagnosis, Type II errors may have more serious consequences 
because diseases or adverse environmental effects would not be correctly detected. 
 

Parameter Estimation And Prediction 
All the methods for hypothesis testing that we have described – the inductive 

method (and its modern descendent, Bayesian inference), the hypothetico-deductive 
method, and statistical hypothesis testing – are concerned with choosing a single 
explanatory “answer” from an initial set of multiple hypotheses. In ecology and 
environmental science, it is more likely that many mechanisms may be operating 
simultaneously to produce observed patterns, so an hypothesis-testing framework that 
emphasizes single explanations may not be appropriate. Rather than try to test multiple 
hypotheses, it may be more worthwhile to estimate the relative contributions of each to 
a particular pattern. This approach is sketched in Figure 4.6, in which we “partition” the 
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effects of each hypothesis on the observed patterns by estimating how much each 
cause contributes to the observed effect.  

 
In such cases, rather than ask whether a particular cause has some effect vs. no 

effect (i.e., is significantly different from 0.0?), we ask what is the best estimate of a 
PARAMETER that expresses the magnitude of the effect.21 For example, measured 
photosynthesis rates for young sun leaves of Rhizophora mangle (Figure 4.3) were fit to 
a Michaelis-Menton equation. This equation is a simple model that describes a variable 
rising smoothly to an asymptote. The Michaelis-Menton equation shows up frequently in 
biology, being used to describe everything from enzyme kinematics (Real 1977) to 
invertebrate foraging rates (Holling 1959).  

 
The Michaelis-Menton equation takes the form Y = kX/(X + D), where k and D 

are the two fitted parameters of the model, and X and Y are the independent and 
dependent variables. In this example, the independent variable (X) is light intensity, and 
the dependent variable (Y) is the net assimilation rate. k represents the asymptote of 
the curve, which in this example would be the maximum assimilation rate. For the data 
in Figure 4.3, the parameter estimate for K is a maximum assimilation rate of 7.1 µmol 
CO2 m-2 s-1. This accords well with an “eyeball estimate” of where the asymptote would 
be on this graph. 

 
The second parameter in the Michaelis-Menton equation is D, the half-saturation 

constant. This parameter gives the value of the X variable that yields a Y variable that is 
half of the asymptote. The smaller D is, the more quickly the curve rises to the 
asymptote. For the data in Figure 4.3, the parameter estimate for D is photosynthetically 
active radiation (PAR) of 250 µmol m-2 s-1.  

 
We also can measure the uncertainty in these parameter estimates, by using 

estimates of standard error to construct confidence or credibility intervals (see Chapter 
3). The estimated standard error for k = 0.49, and for D = 71.3. Statistical hypothesis 
testing and parameter estimation are related, because if the confidence interval of 
uncertainty includes 0.0, we usually are not able to reject the null hypothesis of no effect 
of one of the mechanisms. For the parameters k and D in Figure 4.3, the P-values for 
the test of the null hypothesis that the parameter does not differ from 0.0 are 0.0001 and 
0.004 respectively. Thus, we can be fairly confident in our statement that these 
parameters are greater than 0.0. But, for the purposes of evaluating and fitting models, 
the numerical values of the parameters are more informative than just asking whether 
they differ or not from 0.0. In later chapters, we will give other examples of studies in 
which model parameters are estimated from data. 
 

                                            
21 Chapter 9 will introduce some of the strategies used for fitting curves and estimating parameters from 
data. See Hilborn and Mangel (1997) for a detailed discussion. Clarke et al. (2002) describe recent 
Bayesian strategies to curve fitting. 
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Summary 
Science is done with inductive and hypothetico-deductive methods. In both 

methods, observed data are compared with data predicted by the hypotheses. Through 
the inductive method, which includes modern Bayesian analyses, a single hypothesis is 
repeatedly tested and modified; the goal is to confirm or assert the probability of a 
particular hypothesis. In contrast, the hypothetico-deductive method requires the 
simultaneous statement of multiple hypotheses. These are tested against observations 
with the goal of falsifying or eliminating all but one of the alternative hypotheses. 
Statistics are used to objectively test hypotheses, and can be used in both inductive and 
hypothetico-deductive approaches.  
 

Probabilities are calculated and reported with virtually all statistical tests. The 
probability values associated with statistical tests allow us to infer causes of the 
phenomena that we are studying. Tests of statistical hypotheses using the hypothetico-
deductive method yield estimates of the chance of obtaining a result equal to or more 
extreme than the one observed, given that the null hypothesis is true. This “P-value” is 
also the probability of incorrectly rejecting a true null hypothesis (or committing a Type I 
statistical error). By convention and tradition, P ≤ 0.05 is the cut-off value in the 
sciences for claiming that a result is “statistically significant”. The calculated P-value 
depends on the number of observations, the difference between the means of the 
groups being compared, and the amount of variation among individuals within each 
group. Type II statistical errors occur when a false null hypothesis is incorrectly 
accepted. This kind of error may be just as serious as a Type I error, but because 
scientists are conservative in their conclusions, the probability of Type II errors are 
reported rarely in scientific publications. Tests of statistical hypotheses using inductive 
or Bayesian methods yield estimates of the probability of the hypothesis or hypotheses 
of interest given the observed data. Because these are confirmatory methods, they do 
not give probabilities of Type I or Type II errors. Rather, the results are expressed as 
the “odds” or “likelihood” that a particular hypothesis is correct. 
 

Regardless of the method used, science proceeds by articulating testable 
hypotheses, collecting data that can be used to test the predictions of the hypotheses, 
and relating the results to underlying cause-and-effect relationships.  
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Figure 4.1. The inductive method. The cycle of hypothesis, prediction and observation is repeatedly 
traversed. The dashed arrow of hypothesis confirmation represents the theoretical endpoint of the 
process. The inductive method should be compared to the hypothetico-deductive method (Figure 
4.4), in which multiple working hypotheses are proposed, and an emphasis is placed on falsification, 
rather than verification. 
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Figure 4.2. Two null hypotheses for the relationship between light intensity (measured as 
photosynthetically active radiation) and photosynthetic rate (measured as net assimilation rate) in plants. 
The simplest null hypothesis (dashed line) is no association between the two variables. This null 
hypothesis is the starting point for a hypothetico-deductive approach that assumes no prior knowledge 
about the relationship between the variables and is the basis for a standard linear regression model 
(Chapter 9). In contrast, the curve represents a Bayesian approach of bringing prior knowledge to create 
an informed null hypothesis. The “prior knowledge” is information about plant physiology and 
photosynthesis. In this case, we expect that the assimilation rate will rise rapidly at first as light intensity 
increases, but then reach an asymptote or saturation level. In this case, we expect the relationship to 
follow a Michaelis-Menton equation (Y = kX/(D + X)) with an asymptotic assimilation rate (k = 7.1) and a 
half saturation constant (D = 250) that controls the steepness of the curve. Bayesian methods allow you 
to incorporate this type of prior information into the analysis. However they are controversial because 
two scientists using two different prior probabilities may arrive at different conclusions when analyzing 
the same data set. 
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Figure 4.3. Actual relationship between light intensity and photosynthetic rate is that photosynthetic rate 
rises to an asymptote. The data are measurements of net assimilation rate and photosynthetically active 
radiation for n = 14 young sun leaves of the mangrove Rhizophora mangle in Belize (Farnsworth and 
Ellison 1996). A Michaelis-Menton equation of the form Y = kX/(D + X) was fit to the data. The 
parameter estimates ± 1 standard error are: k = 7.1 ± 0.49; D = 250 ± 71.3. r2 = 0.94. 
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Figure 4.4 The hypothetico-deductive method. Multiple working hypotheses are proposed and their 
predictions tested with the goal of falsifying the incorrect hypotheses. The correct explanation is the 
one that stands up to repeated testing but fails to be falsified. In contrast, the inductive method uses a 
single hypothesis that is repeatedly modified, and the emphasis is on verification, rather than 
falsification, of the predictions. 
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Figure 4.5. Illustrations of the relationship between statistical power and P-value (top panel) and 
observable effect size (bottom panel) as a function of sample size. The P-value is the probability of 
incorrectly rejecting a true null hypothesis, whereas statistical power is the probability of correctly rejecting 
a false null hypothesis. The top panel illustrates the general result that the lower the P-value used for 
rejection of the null hypothesis, the lower the statistical power of correctly detecting a treatment effect. 
The bottom panel illustrates the general result that the smaller the difference between the treatment group 
means, the larger the sample size that is necessary to have good statistical power to detect a treatment 
effect. Data are simulated based on a comparison of gluco-corticoid hormone levels measured for a 
treatment group of wolves that was exposed to snowmobiles and a control group that was not. In the top 
panel, the difference between population means was set at 50 ng/g glucocorticoid. In the original data, the 
standard deviation of the population of wolves unexposed to snowmobiles was 73.1, and of wolves 
exposed to snowmobiles, 114.2. The top panel suggests that if there were only a 50 ng/g difference 
between the experimental populations, and if sample size was N = 50 in each group, the experimenters 
would have correctly accepted the alternative hypothesis only 51% of the time for a P = 0.01. The bottom 
panel shows that for an N = 50, power increases steeply as the populations become more different. In the 
actual well-designed study (Creel et al. 2002), sample size was 193 in the unexposed group and 178 in 
the exposed group, the difference between population means was 598 ng/g, and the actual power of the 
statistical test was close to 1.0 for P = 0.01.  
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Figure 4.6. Hypothesis testing versus parameter estimation. Parameter estimation more easily 
accommodates multiple mechanisms, and may allow for an estimate of the relative importance 
of different factors. Parameter estimation may involve the construction of confidence or 
credibility intervals (see Chapter 3) to estimate the strength of an effect. A related technique in 
the analysis of variance is to decompose the total variation in the data into proportions that are 
explained by different factors in the model (see Chapter 10). Both methods quantify the relative 
importance of different factors, whereas hypothesis testing emphasizes a binary yes/no decision 
about whether a factor has a measurable effect or not. 
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 Retain H0 Reject H0 
H0 True Correct Decision Type I error (α) 
H0 False Type II error (β) Correct Decision 
Table 4.1. The quadripartite world of statistical testing. Underlying null hypotheses are either true or not, 
but we must use sampling and limited data in the real world to make a decision to accept or reject the null 
hypothesis. Whenever a statistical decision is made, one of 4 general outcomes will result. A correct 
decision results when we retain a null hypothesis that is true (upper left-hand corner) or reject a null 
hypothesis that is false (lower right-hand corner). The other two possibilities represent errors in the 
decision process. If we reject a null hypothesis that is true, we have committed a Type I Error (upper right-
hand corner). Standard parametric tests seek to control α, the probability of a Type I Error. If we retain a 
null hypothesis that is false, we have committed a Type II Error (lower right-hand corner). The probability 
of a Type II Error is β. The power of a statistical test is 1 – β, the probability of correctly rejecting the null 
hypothesis when it is false. Whereas both α and β depend on sample size, β also depends on the effect 
size, that is the difference among treatments that you are trying to detect. Thus, estimation of β requires 
that the alternative hypothesis be specified, whereas α can be determined by specifying only the null 
hypothesis. 
 
 


